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Grain-boundary sliding controlled creep: 
its relevance to grain rolling and 
superplasticity 

W. BEERE 
Central Electricity Generating Board, Berkeley Nuclear Laboratories, Berkeley, 
G loucestersh ire, U K 

A model of a polycrystal is developed which describes creep controlled by the rate of 
sliding on grain boundaries. Normal boundary stresses are assumed to relax rapidly by a 
mechanism which transfers material between boundaries to accommodate the sliding dis- 
placements. A self-consistent treatment of the shear stresses on the boundaries and the 
shears between grain centres only arises when the grains are allowed to roll or rotate. The 
calculated rates of rotation agree with rates observed during Stage II superplastic creep. 
Many features of the model tie in with the geometrical behaviour of grains deforming 
superplastically. 

1. Introduction 
Several papers have appeared recently calculating 
the creep rate of polycrystals when shear stresses 
acting on the boundaries are rapidly relaxed by 
grain-boundary sliding. The resulting inhomo- 
geneous deformation can differ considerably from 
uniform material deforming homogeneously. 
Relaxing the boundary shear stresses to zero redis- 
tributes the normal boundary stresses. In this case, 
creep is controlled by the slower relaxation of the 
redistributed normal stresses [1 -4] .  

The simplifying assumption common to the 
treatments is that movement of every grain centre 
corresponds exactly with the bulk strain in the 
aggregate, implying that the behaviour of one grain 
is indistinguishable from a neighbour and that co- 
operative movements of clumps of grains are 
absent. When a grain centre moves relative to a 
neighbour a change in distance between the centres 
can occur through plastic flow within the grain or 
diffusive plating of material at the boundary. If 
the grain centres move past each other parallel to 
their common boundary this can be achieved by 
shear within the grain or grain-boundary sliding. 
When sliding is present it must be accommodated 
by either of the first two processes. Diffusion 

creep and boundary sliding are mutually accommo- 
dating [5, 6]. 

The present paper also discusses the deformation 
ofa polycrystalline aggregate but differs in treating 
the case of grain-boundary sliding control. The 
accommodating mechanism is assumed to be rapid 
diffusion between grain boundaries. The normal 
boundary stresses are quickly relaxed leaving the 
boundary shear stresses to support the aggregate. 
The much slower relaxation of the shear stresses 
then controls the creep rate. The physical details of 
the shear mechanism are not considered, but a 
phenomenological relationship is assumed between 
the boundary shear stress and the shear rate. The 
consequences of these assumptions are developed 
and it is shown that the shear stresses appearing on 
a grain are self-consistent only when the grains are 
allowed to roll over neighbours. 

2. The properties of grain models 
Real polycrystals are irregular and have a distri- 
bution of sizes making analysis difficult. They are 
often replaced by regular shapes such as hexagons, 
cubes or tetrakaidecahedra to ease calculations. 
When strained, the regular shapes deform and 
become irregular and so creep rates calculated for 
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a particular geometry can be thought of as the 
instantaneous rate for that configuration. 

Hexagonal arrays have strength when either the 
boundary shear stress or normal stress is relaxed to 
zero. They are also equally resistant to diffusion 
creep for all orientations of the hexagon to the 
applies stress [3]. Cubic grains behave quite dif- 
ferently. If  either the normal or shear stress on the 
boundary is relaxed to zero the array has no 
strength, and will collapse like a soft plastic solid 
or a pack of cards for each case respectively. 
Strength is introduced into the array by mathemat- 
ically forcing the cube centres to follow the bulk 
strain [4]. This is justified by saying the aggregate 
consists of  a large number of arrays all at random 
orientations to the specimen axis. The movement 
of one array is modified by the movements avail- 
able to nearby arrays. Since on average the orien- 
tations are random the bulk deformation is hom- 
ogeneous. The stress supported by an array 
depends on its orientation, some orientations 
being stronger than others. 

Hexagons and cubes have different properties 
but it is not clear which of these two extremes 
best represents real grains. It is quite likely that in 
real crystals, differences in strength do exist be- 
tween small and large grains, particularly for dif- 
fusion creep processes, but the orientation depen- 
dence is not known. 

Hexagonal grains are only two dimensional and 
cubic grains have four boundaries meeting at an 
edge. Despite these limitations, simple shapes are 
useful in discussing polycrystals. Cubes are the 
simplest three dimensional shape to analyse 
especially with regard to shear displacements be- 
tween grain centres. Shear can be accomplished by 
sliding along one of the faces and unlike hexagons 
or tetrakaidecahedra normal stresses are not devel- 
oped on the other faces. Whilst this may be a dis- 
advantage when modelling a creep process con- 
trolled by the relaxation of normal boundary 
stresses this is not so in the present case. In the 
situation discussed, normal stresses are relaxed 
quickly and only the shear stresses need be con- 
sidered. 

3. Analysis 
The model considers the shear stresses appearing 
on the faces of the cubic grains and the associated 
grain centre motion when the aggregate is deformed 
in uniaxial tension. The grains are considered to be 
rigid blocks with all deformation taking place in a 
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Figure 1 A cubic grain orientated randomly in a tensile 
specimen. 
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(a) (b) 
Figure 2 Face 1 of the cubic grain showing the sliding 
strains (a) and the shear stresses (b) appearing on the sur- 
face. 

"mantle" on the outside of the grain. Thus, no 
shear takes place within the grain, and an ideal 
accommodating process for the boundary shear 
displacements is rapid diffusion creep. Fig. 1 
shows the scheme with the cube orientated at 
some arbitrary angle to the applied stress; the 
forces and sliding displacements on face 1 are 
shown in Fig. 2. If the face is sliding in a particular 
direction, then the force resulting from the motion 
must be in the same direction. It follows that the 
angles 01 and 02 of Fig. 2 are identical and, if the 
stress and strain rate are related by a law of the 
type ~ = Xo n, then the shear strain rate between 
cube centres is given by 

~1 = X(o~1 + o~1) "/2 cos 02. (1) 

Since no shear takes place within the grain, e~l is 
also the boundary shear velocity on the surface of 
a unit cube. 02 can be obtained from Fig. 2b, and 
the shear rate is 

g~l = X~ -1 o21 (2) 

where 

or in general, 

ol 2 = o 2 , +o~1,  (3) 

"~ = Xo7 -I oij, i ~ /. eli (4) 



Material continuity demands that the cross terms 
are equal, i.e. e~2 = e~ etc. This however can be 
shown to be inconsistent if el2 and e~l are written 
in terms of  the stresses 

(0.21 q- 0-2213'(n-1)/20"21 = (0-22 Jr- 022)(n-1) /20.12 

(s) 
Since 0.~1 = o12 it follows 0"31 = o32, provided n = 
1. Repeating the process for faces 2 and 3 leads to 
the conclusion that all the shear stresses are equal, 
a situation which is clearly impossible. 
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Figure 3 An array of cubic grains showing the system of 
rotations about the principal axes. 

The anomaly is removed when the grains are 
allowed to rotate (Fig. 3) at angular rates a)l ,  co2 
and c~3 about the three co-ordinate axis 1 ,2 and 3 
respectively. If  eij replaces ~sj as the shear strain 
between grain centres, and .s eii is the sliding rate on 
the cube faces, then rotations and strains are re- 
lated by 

(~12 

e21 

~'23 

~32 

e31 

ff13 

= el2 - 603 

= 4~1 q- ('~3 

= ~s23 - -  (.s 

= ~ 2  At- COl 

= el3 + a~2. 

(6) 

When the aggregate is deformed, energy is dis- 
sipated by sliding on the boundary. The rates of  
rotation a)l ,  co2 and co3 are chosen to reduce the 
energy expenditure to a minimum for a given 
cube-centre strain. 

If  W1 is the rate of  working on face 1 then 

W, ~ [(G1)2 + (e~1)51 ''~ (o2 + ~1)1/~, 

(7) 

or in terms of  strains and rotations 

~'/10C [(C31 "t-(.s 2 + ( C 2 1 -  (-'03)2] (1 +rO/2rt 

[u [(ff12 Jr- (.~3) 2 -F (~32 --("01)2] (l+n)/2n (8) 

w3 o~ [(~13 - ~ 2 )  2 + (~23 + COl )2]~1 +~)/2. 

where Wz and W3 are the rates of  working on 
faces 2 and 3 respectively. The total rate of  energy 
dissipation is given by W=W~ +W2 +W3 and 
the most favourable rotations are found by par- 
tially differentiating with respect to the rotations 
at constants cube-centre strain rate, i.e. aW/O~ = 

The derivative with 

- -  = [(el3 - ~ 2 )  2 

+ (e23 + c;1)2] (1 -n)~2n(~3 + ~ 1 )  

- - [ ( e , =  + ~ 3 )  ~ + (e32 - - ~ 1 ) ~ ]  ~' -n~2n 

(432 - -  COa ). (9 )  

OW/Oco2 = OW/~a~3 = O .  

respect to o31 is 

aW 

Next, the shear stresses are written in terms of  
the strain rates. Since the shear stresses are related 
to sliding strains by an equation of  the type 0. = 
(es/X)un, o23 is given by 

0"23 = ((6~3)  2 q- (ff~3)2) 1 -n /2n X ~ 3  ( t 0 )  

or in terms of  grain centre strains and rotations 

( 5  n 0"23 = [ ( G  - c~2)2 

+ (~23 + a h ) : ]  (1 -n ) /~ (e23  + a ) l ) ,  

(11) 

and similarly for 032 ; 

0"32 = [(~12 -]- 033) 2 -I- 

q- (C32 - -  C01 )2](1/n)/2n (~32 - -  GO1 ) 

(12) 

Equations 9, 11 and 12 show that 0"23 = a32 implies 
that 3W/O~a = 0. Similarly, when 012 = 0.zl, Ore~ 
0~3 = 0 ,  and when 0.13 = % 1 ,  3W/3w2 = 0 .  
Thus, when the cubes deform they follow the path 
of  least energy expenditure, which simultaneously 
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satisfies the balance of  shear stresses on the cube 
faces. 

The cubes were considered to be equally resistant 
to sliding on all faces. If, however, sliding is easier, 
say, on face 1 than face 2 the material parameter X 
takes on different values Xl, X2 and X3 for faces 1, 
2 and 3 respectively. I f  the above arguments are re- 
peated with the new values of  sliding resistance the 
same conclusions are reached. 

The relationship between the rate of  grain ro- 
tation and specimen strain rate may be found as 
follows. The shear rate between cube centres is 
obtained by putting ~i /= ~ji and adding the 
appropriate pairs of  equations (Equation 6) to give 

2~ij = ~sj + eli (13) 

Subtraction gives the rates of  rotation 

2col = 6~3 --e~2 etc. (14) 

Substituting stresses for strain rates from Equation 
4 yields 

26ij = [ ) k i O  n - 1  q -  ~k](77 -1 ] Oij , i ~:j (15) 

for the strains, and for the rotations 

2co: = [Xio~ -1 - - X k o ~ - l ] ,  criii 4: k (16) 

The correct sign is obtained by putting i, ], k 
equal to 1, 2 and 3 respectively and rotating cycli- 
cally. The shear strains between cube centres 
depend on the cube orientation 0, r (Fig. 1). 
When the aggregate deforms uniaxially the strain 
rates between cube centres are 

e12 = - 1 . 5 6  sin 0 cos 0 cos q5 

623 = 1 . 5 6 c o s 2 0 s i n r 1 6 2  (17) 

63~ = - 1 . 5 6  sin 0 cos 0 s ine  

Substituting the trigometrical relationships for the 
strains (Equations 17) into Equation 15 gives three 
simultaneous equations with unknowns oii, i 4] .  
These can be solved numerically for particular 
values of  0 and r The solutions are in terms of  
and Xk and when substituted into Equation 6 give 
the rotations in terms of  the strain ~. 

4. Results and discussion 
The rate of  grain rotation was first calculated for a 
cube with all boundaries equally resistance to 
sliding, i.e. Xl = X2 = k3. The rotation about the 
3 axis is shown in Fig. 4, for cube orientations 
within the range 0 < 0 < 7r/2 and 0 < r < 7r/2 and 
for a stress exponent n of  2. The rate of  rotation is 
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Figure 4 The rate of  grain rotat ion about  axis 3, when all 
grain faces are equally resistance to sliding. The angle 
specified are values of  0, Fig. 1. 

quoted in terms of the strain rate. The relationship 
between the strain rate and the boundary sliding 
resistances Xl, X2 and X3 is not calculated, but the 
bulk strain rate will be proportional to the square 
of  the applied stress. As intuitively required, the 
rotations are zero when 0 = 4)= 0 but otherwise 
depend on the cube orientation. The maximum 
rate of  rotaion is about 0.07~. Thus, even if a 
grain is maintained at the opt imum angle for a 
strain of  unity the rotation will still only be 0.07 
radians or 4 ~ The rotations about the 1 and 2 axis 
are similar but with different symmetry.  

The effect of  stiffening face 1 by a factor of  2 
(Xl = 0.5X~, k2 = X3) is shown in Fig. 5. This in- 
creases the rate of  rotation about axis 3 and alters 
the shape of the curves. Rotation about axis 2 is 
similar but the rate for axis 1 is not increased as 
much. 

XI =05X2; X2=X 3 

I 

-'31 10 20 30 &O 50 60 70 80 90 
~ , d e g r e e s  

Figure 5 The rate of  grain rotat ion about  axis 3, with  face 
1 of  the  cube twice as resistant to slip as faces 2 and 3. 
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Figure 6 The rate of grain rotation about axis 3, with the 
face 1 of the cube ten times more resistant to slip as faces 
2 and 3. 
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Figure 7 A 2-dimensional section of the cubic grains. The 
grain centres are joined by dotted fines. The undeformed 
grains (a) are deformed uniaxially (b) producing sliding on 
all faces and transfer of material from horizontal to verti- 
cal boundaries. If sliding on the vertical faces is difficult 
this is reduced whilst maintaining the same grain centre 
positions by rotating the grains (c). 

'6 
A further increase in sliding resistance to a factor 

of  10 (Xl = 0.1X2, X2 = 3,3) increases the rates of  ~ 3 
rotation still further (Fig. 6). Again rotation about .3 
axis 2 is similar, whilst rotation axis 1 is much g 0 
smaller. 

Before proceeding with the discussion, it is worth ~ -3 
considering a simpler 2-dimensional model to see -6 
how the grain rotation arises. Fig. 7a illustrates six 
cubes with their centres joined by dashed lines. 
The cubes are deformed uniaxially and the centres 
move to new positions (Fig. 7b). The accommo- 
dating process has to move material from the 
horizontal to the vertical faces. Sliding takes place 
on both types of  face and the grains are shown 
without rotation. If, however, sliding is much 
more difficult on the vertical faces the same grain 
centre positions can be achieved without sliding 
along the vertical boundaries. This is illustrated in 
Fig. 7c. The extra work in the larger sliding dis- 
placement on the horizontal boundaries is more 
than compensated by the reduced sliding on verti- 
cal faces resulting from grain rotation. 

The rates calculated for the 3-dimensional model 
can be compared with measurements made in the 
scanning electron microscope [7] ; observations of  
the surface of  creep specimens, deformed super- 
plastically in situ showed the grains experienced 
large rotations. The angular variation with strain 
has been differentiated, Fig.  8, t o  give the rate of  
rotation. The observations do not form smooth 
curves because the rate is the average value be- 
tween successive measurements o t  angle. The rates 
vary cyclically with a period of  about unit strain 
reaching a maximum of  about 0.6~. The maximum 
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Figure 8 The observed rotations of surface grains on a 
tensile specimen deformed in superplastic creep in situ in 
a scanning electron microscope [7]. 

observed rate and the maximum calculated rate 
can be compared directly. This suggests that the 
boundary resistance must vary by a factor of  10 
(Fig. 6) to produce the observed maximum rate. 
Obviously this is a rough comparison, but an as- 
sessment of  all feasible sliding resistances would be 
lengthy, and it is fairly clear that grain rotational 
rates of  this order can result from differences in 
sliding resistance. 

It is also worth considering whether the differ- 
ences in sliding resistance arise from the intrinsic 
properties of  high-angle boundaries, or are caused 
by a total lack of  resistance at the outermost face 
of  a surface grain. If  face 1, Fig. 3, is taken to be 
the exterior face, then it is the average value of  Xl 
which will  be altered. The analysis showed that 
altering the sliding resistance on face 1 affects ro- 
tations about axis 2 and 3, leaving rotations about 
1 little affected. This can be seen intuitively from 
Fig. 3 by looking down axis 1. Since the outer- 
most grain and the one beneath do not rotate 
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about axis 1 relative to each other, the sliding 
resistance on face 1 does not directly affect this 
mode of rotation. Observed rotations are about 
axis 1, however, and we must conclude that large 
rotations result from differences in sliding resist- 
ance on faces 2 and 3. This is in agreement with 
the 2-dimensional model which can be considered 
to be a section of the cubic array viewed along axis 
1. 

The resistance-to-sliding along boundaries has 
been measured directly in bi-crystals. The variation 
with misorientation can be large [8] as can the 
interspecimen variation between nominally identi- 
cal bicrystals. A factor of 10 variation between slip 
resistance is physically reasonable. 

Unfortunately theoretical models of corrugated 
boundaries may not be applicable to the present 
model. A 10-to-1 variation in boundary viscosity 
would easily be achieved by varying the corru- 
gation. In the present model, rapid diffusion across 
the grain has been invoked as the most suitable 
accommodating mechanism. Since the path differ- 
ence across the corrugations is much smaller than 
the grain-size, sliding by this mechanism would be 
very rapid indeed. Also the shear rate would vary 
linearly with shear stress. 

The creep process developed describes the 
motion of rigid grains of material which slide past 
each other. The redistribution of material necess- 
ary to accommodate sliding takes place in or near 
the boundary region leaving the grains undeformed 
in their interior. When the rate-controlling bound- 
ary shear process depends on (shear stress) 2 the 
grains rotate. The above conditions are often satis- 
fied during stage II superplastic creep (see a recent 
review, [9]. Stage II is characterized by an 
apparent stress exponent of 2. Low dislocation 
density within the grains and an absence of slip 
bands imply little plastic deformation within the 
grain. Also surface scratches remain straight and 
reveal sharp grain-boundary sliding offsets. Super- 
plasticity is observed in materials with a grain size 
d, usually less than 10 gin. The creep rate varies as 
l [ d  v2 to l i d  whereas diffusion creep varies as 
1 /d  2 or 1 /d  3 for volume and grain-boundary dif- 
fusion respectively. Decreasing the grain size in- 

creases the rate of a diffusion creep process faster 
than the observed increase in superplastic creep 
rate. At a sufficiently small grain size it is reason- 
able to invoke rapid diffusion creep as an accom- 
modating process. The observed rates of grain ro- 
tation are in agreement with the rates calculated 
for the boundary sliding mechanism. The rotation 
results in grains rolling over neighbours, and this 
will facilitate grain switching [10] and the main- 
tenance of a nearly equiaxed structure. 

Many rate-controlling mechanisms have been 
proposed for superplastic creep including various 
types of dislocation creep, diffusion creep with a 
threshold stress as well as grain-boundary sliding. 

Any theory describing superplastic flow must 
account for the microstructural changes as well as 
describing the creep rate. Grain-boudnary sliding is 
the only rate-controlling process which produces a 
significant grain rotation. The rotation will not 
occur when sliding is rapid accommodating mech- 
anism. Consequently sliding appears to be the 
most likely rate-controlling process during stage II 
superplastic creep. 
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